Techno-economic Analysis of co-firing waste Refused Derived Fuel (RDF) in coal-fired power plant
Keywords:
Co-Firing, Refused Derived Fuel (RDF), Waste, Techno EconomicAbstract
Massive efforts have been made to reduce CO2 emissions around the world from the used of fossil fuels by seeking alternative fossil fuels in power plants. The utilization of waste in the energy sector with co-firing technology is one way to reduce the impact on the environment. The Indonesian government is currently issuing SNI 8966:2021 to take advantage by using of biomass waste as raw material for making Refused Derived Fuel or RDF in power plants (BSN, 2021. RDF which has a calorific value of 1800 kcal/kg will be tested in PLTU Indramayu which the coal has caloric value 4100 kcal/kg. The mass ratio for blending is 1% RDF and 99% Coal. This study aims to analyze the feasibility of economical, operational, and environmental if co-firing test carried out with waste RDF at PLTU. RDF is processed from waste using the concept of collaboration with DLH Indramayu. RDF processing site is carried out at PDU Indramayu using the peuyeumization method. Within 11 days, the plant produced RDF 14 tons which will be supplied as mixed fuel for co-firing PLTU Indramayu. Operational observations at the Indramayu PLTU during the 1% BBJP co-firing process showed parameters that were still within operational safe limits, but there was an increase in SO2 and NOx emissions which were still below the KLHK emission standards. The results of the techno-economic analysis show that if there is an increase in LCOE of 0.16-rupiah in the co-firing test with 1% BBJP, while for the Net Present Value (NPV) parameter a value of Rp.40,437,359 is obtained, the Internal rate return (IRR) parameter is 8.25%, the Profitability index (PI) parameter is 1.011 and the last payback period (PBP) is 6.63 years indicating the feasibility of investing in the BBJP processing project. From an economic point of view, the surrounding community provides opportunities for employment and business provision of consumable materials for BBJP processing projects.
Published
Issue
Section
Copyright (c) 2023 Yuli Fitrianingrum, Adi Surjasatyo
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International. that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.